Optica Open
Browse
arXiv.svg (5.58 kB)

High-Efficiency Low-Noise Optomechanical Crystal Photon-Phonon Transducers

Download (5.58 kB)
preprint
posted on 2024-06-26, 16:00 authored by Sameer Sonar, Utku Hatipoglu, Srujan Meesala, David Lake, Hengjiang Ren, Oskar Painter
Optomechanical crystals (OMCs) enable coherent interactions between optical photons and microwave acoustic phonons, and represent a platform for implementing quantum transduction between microwave and optical signals. Optical absorption-induced thermal noise at cryogenic (millikelvin) temperatures is one of the primary limitations of performance for OMC-based quantum transducers. Here, we address this challenge with a two-dimensional silicon OMC resonator that is side-coupled to a mechanically detached optical waveguide, realizing a six-fold reduction in the heating rate of the acoustic resonator compared to prior state-of-the-art, while operating in a regime of high optomechanical-backaction and millikelvin base temperature. This reduced heating translates into a demonstrated phonon-to-photon conversion efficiency of 93.1 $\pm$ 0.8% at an added noise of 0.25 $\pm$ 0.01 quanta, representing a significant advance toward quantum-limited microwave-optical frequency conversion and optically-controlled quantum acoustic memories.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC