posted on 2023-01-06, 17:03authored byReuben Amedalor, Petri Karvinen, Henri Pesonen, Jari Turunen, Tapio Niemi, Subhajit Bej
Guided-mode resonances in diffraction gratings are manifested as peaks (dips) in reflection (transmission) spectra. Smaller resonance line widths (higher Q-factors) ensure stronger light-matter interactions and are beneficial for field-dependent physical processes. However, strong angular and spectral dispersion are inherent to such high-Q resonances. We demonstrate that a class of high-Q resonant modes (Q-factor >1000) exhibiting extraordinarily weak dispersion can be excited in crossed gratings simultaneously with the modes with well-known nearly linear dispersion. Furthermore, we show that the polarization of the incoming light can be adjusted to engineer the dispersion of these modes, and strong to near-flat dispersion or vice-versa can be achieved by switching between two mutually orthogonal linear polarization states. We introduce a semi-analytical model to explain the underlying physics behind these observations and perform full-wave numerical simulations and experiments to support our theoretical conjecture. The results presented here will benefit all applications that rely on resonances in free-space-coupled geometries.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.