Optica Open
Browse
arXiv.svg (5.58 kB)

High-Temperature Ultra-Broad UV-MIR High-Efficiency Absorber Based on Double Ring-Shaped Titanium Nitride Resonators

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:41 authored by Shun Cao, Yi Jin, Hongguang Dong, Tingbiao Guo, Zhenchao Liu, Jinlong He, Sailing He
An ultrabroad absorber based on double-ring-shaped titanium nitride (TiN) nanoresonators, which can work in high temperatures, is proposed and numerically studied. The absorber with some optimal parameters exhibits an averaged absorption of 94.6% in the range of 200 - 4000 nm (from ultraviolet to mid-infrared) and a band from 200 - 3518 nm having an absorption > 90%. We have demonstrated in detail the physical mechanisms of the ultra-broad absorption, including the dielectric lossy property of TiN material itself in shorter wavelengths and plasmonic resonances caused by the metallic property of TiN nano-resonators in longer wavelengths. In addition, the absorber shows polarization independent and wide-angle acceptance. Another absorber with double TiN nano-rings of different heights has flatter and higher absorption efficiency (more than 95% absorption) at 200-2860 nm waveband. These properties make the proposed absorbers based on TiN has great potentials in many applications, such as light trapping, photovoltaics, thermal emitters.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC