Optica Open
Browse
arXiv.svg (5.58 kB)

High-dimensional frequency-bin entangled photons in an optical microresonator on a chip

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:15 authored by Poolad Imany, Jose A. Jaramillo-Villegas, Ogaga D. Odele, Kyunghun Han, Daniel E. Leaird, Joseph M. Lukens, Pavel Lougovski, Minghao Qi, Andrew M. Weiner
Quantum frequency combs from chip-scale integrated sources are promising candidates for scalable and robust quantum information processing (QIP). However, to use these quantum combs for frequency domain QIP, demonstration of entanglement in the frequency basis, showing that the entangled photons are in a coherent superposition of multiple frequency bins, is required. We present a verification of qubit and qutrit frequency-bin entanglement using an on-chip quantum frequency comb with 40 mode pairs, through a two-photon interference measurement that is based on electro-optic phase modulation. Our demonstrations provide an important contribution in establishing integrated optical microresonators as a source for high-dimensional frequency-bin encoded quantum computing, as well as dense quantum key distribution.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC