Optica Open
Browse
- No file added yet -

High-fidelity, low-latency polarization quantum state transmissions over a hollow-core conjoined-tube fibre at around 800 nm

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:01 authored by Xin-Yu Chen, Wei Ding, Ying-Ying Wang, Shou-Fei Gao, Fei-Xiang Xu, Hui-Chao Xu, Yi-Feng Hong, Yi-Zhi Sun, Pu Wang, Yan-Qing Lu, Lijian Zhang
The performances of optical fibre-based quantum information systems are limited by the intrinsic properties of silica glass materials, e.g. high latency, Rayleigh-scattering loss wavelength scaling law, and cross-coupling induced modal impurity. Hollow-core optical fibre (HCF) promises to unify air-borne light propagation and non-line-of-sight transmission, thus holding great potentials for versatile photonics-based quantum infor-mation applications. The early version of HCF based on photonic-bandgap guidance has not proven itself as a reliable quantum channel because of the poor modal purity in both spatial and polarization domains, as well as significant difficulty in fabrication when the wavelength shifts to the visible region. In this work, based on the polarization degree of freedom, we first, to the best of our knowledge, demonstrate high-fidelity (~0.98) single-photon transmission and distribution of entangled photons over a conjoined-tube hollow-core fibre (CTF) by using commercial silicon single-photon avalanche photodiodes. Our CTF realized the combined merits of low loss, high spatial mode purity, low polarization degradation, and low chromatic dispersion. We also demonstrate single-photon low latency (~99.96% speed of light in vacuum) transmission, thus paving the way for extensive uses of HCF links in versatile polarization-based quantum information processing.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC