Optica Open
Browse

High-fidelity spatial information transfer through dynamic scattering media by an epsilon-near-zero time-gate

Download (5.58 kB)
preprint
posted on 2025-03-29, 16:01 authored by Yang Xu, Saumya Choudhary, Long D. Nguyen, Matthew Klein, Shivashankar Vangala, J. Keith Miller, Eric G. Johnson, Joshua R. Hendrickson, M. Zahirul Alam, Robert W. Boyd
Transparent conducting oxides (TCO) such as indium-tin-oxide (ITO) exhibit strong optical nonlinearity in the frequency range where their permittivities are near zero. We leverage this nonlinear optical response to realize a sub-picosecond time-gate based on upconversion (or sum-) four-wave mixing (FWM) between two ultrashort pulses centered at the epsilon-near-zero (ENZ) wavelength in a sub-micron-thick ITO film. The time-gate removes the effect of both static and dynamic scattering on the signal pulse by retaining only the ballistic photons of the pulse, that is, the photons that are not scattered. Thus, the spatial information encoded in either the intensity or the phase of the signal pulse can be preserved and transmitted with high fidelity through scattering media. Furthermore, in the presence of time-varying scattering, our time-gate can reduce the resulting scintillation by two orders of magnitude. In contrast to traditional bulk nonlinear materials, time gating by sum-FWM in a sub-wavelength-thick ENZ film can produce a scattering-free upconverted signal at a visible wavelength without sacrificing spatial resolution, which is usually limited by the phase-matching condition. Our proof-of-principle experiment can have implications for potential applications such as \textit{in vivo} diagnostic imaging and free-space optical communication.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC