Optica Open
Browse
arXiv.svg (5.58 kB)

High-frequency cavity optomechanics using bulk acoustic phonons

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:17 authored by Prashanta Kharel, Glen I. Harris, Eric A. Kittlaus, William H. Renninger, Nils T. Otterstrom, Jack G. E. Harris, Peter T. Rakich
To date, micro- and nano-scale optomechanical systems have enabled many proof-of-principle quantum operations through access to high-frequency (GHz) phonon modes that are readily cooled to their thermal ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize robust ground state operation within such microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency ($13$ GHz) phonons within macroscopic systems (cm-scale). Counterintuitively, we show that these macroscopic systems, with motional masses that are $>20$ million times larger than those of micro-scale counterparts, offer a complementary path towards robust quantum operations. Utilizing bulk acoustic phonons to mediate resonant coupling between two distinct modes of an optical cavity, we demonstrate the ability to perform beam-splitter and entanglement operations at MHz rates on an array of phonon modes, opening doors to applications ranging from quantum memories and microwave-to-optical conversion to high-power laser oscillators.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC