Optica Open
Browse

High-performance thin-film lithium niobate Mach-Zehnder modulator on thick silica buffering layer

Download (5.58 kB)
preprint
posted on 2024-12-19, 17:00 authored by Xiaotian Xue, Yingdong Xu, Wenjun Ding, Rui Ye, Jing Qiu, Guangzhen Li, Shijie Liu, Hao Li, Luqi Yuan, Bo Wang, Yuanlin Zheng, Xianfeng Chen
High-speed photonic integrated circuits leveraging the thin-film lithium niobate (TFLN) platform present a promising approach to address the burgeoning global data traffic demands. As a pivotal component, TFLN-based electro-optic (EO) Mach-Zehnder modulators (MZMs) should exhibit low driving voltage, broad operation bandwidth, high extinction ration, and low insertion loss. However, the pursuit of both maximal EO overlap integral and minimal microwave loss necessitates a fundamental compromise between driving voltage and operational bandwidth. Here, we demonstrate high-performance TFLN EO MZMs constructed on a 12-{\mu}m-thick silica buried layer using periodic capacitively loaded traveling-wave electrodes. In contrast to their counterparts utilizing undercut etched silicon substrates or quartz substrates, our devices exhibit streamlined fabrication processes and enhanced modulation efficiency. Notably, the fabricated MZMs attains a high modulation efficiency of 1.25 Vcm in the telecom C-band, while maintaining a low EO roll-off of 1.3 dB at 67 GHz. Our demonstration offers a pathway to achieving perfect group velocity matching and break the voltage-bandwidth limit in a simplified configuration suitable for volume fabrication, thereby laying foundational groundwork for the advancement of high-performance TFLN MZMs and benefiting the next-generation PICs in optical telecommunication, signal processing and other applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC