Optica Open
Browse
arXiv.svg (5.58 kB)

High-resolution spectroscopy of a quantum dot driven bichromatically by two strong coherent fields

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:02 authored by Chris Gustin, Lukas Hanschke, Katarina Boos, Jonathan R. A. Müller, Malte Kremser, Jonathan J. Finley, Stephen Hughes, Kai Müller
We present spectroscopic experiments and theory of a quantum dot driven bichromatically by two strong coherent lasers. In particular, we explore the regime where the drive strengths are substantial enough to merit a general non-perturbative analysis, resulting in a rich higher-order Floquet dressed-state energy structure. We show high resolution spectroscopy measurements with a variety of laser detunings performed on a single InGaAs quantum dot, with the resulting features well explained with a time-dependent quantum master equation and Floquet analysis. Notably, driving the quantum dot resonance and one of the subsequent Mollow triplet sidepeaks, we observe the disappearance and subsequent reappearance of the central transition and transition resonant with detuned-laser at high detuned-laser pump strengths and additional higher-order effects, e.g. emission triplets at higher harmonics and signatures of higher order Floquet states. For a similar excitation condition but with an off-resonant primary laser, we observe similar spectral features but with an enhanced inherent spectral asymmetry.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC