Optica Open
Browse
arXiv.svg (5.58 kB)

High-speed photonic crystal modulator with non-volatile memory via structurally-engineered strain concentration in a piezo-MEMS platform

Download (5.58 kB)
preprint
posted on 2023-10-14, 16:00 authored by Y. Henry Wen, David Heim, Matthew Zimmermann, Roman A. Shugayev, Mark Dong, Andrew J. Leenheer, Gerald Gilbert, Matt Eichenfield, Mikkel Heuck, Dirk R. Englund
Numerous applications in quantum and classical optics require scalable, high-speed modulators that cover visible-NIR wavelengths with low footprint, drive voltage (V) and power dissipation. A critical figure of merit for electro-optic (EO) modulators is the transmission change per voltage, dT/dV. Conventional approaches in wave-guided modulators seek to maximize dT/dV by the selection of a high EO coefficient or a longer light-material interaction, but are ultimately limited by nonlinear material properties and material losses, respectively. Optical and RF resonances can improve dT/dV, but introduce added challenges in terms of speed and spectral tuning, especially for high-Q photonic cavity resonances. Here, we introduce a cavity-based EO modulator to solve both trade-offs in a piezo-strained photonic crystal cavity. Our approach concentrates the displacement of a piezo-electric actuator of length L and a given piezoelectric coefficient into the PhCC, resulting in dT/dV proportional to L under fixed material loss. Secondly, we employ a material deformation that is programmable under a "read-write" protocol with a continuous, repeatable tuning range of 5 GHz and a maximum non-volatile excursion of 8 GHz. In telecom-band demonstrations, we measure a fundamental mode linewidth = 5.4 GHz, with voltage response 177 MHz/V corresponding to 40 GHz for voltage spanning -120 to 120 V, 3dB-modulation bandwidth of 3.2 MHz broadband DC-AC, and 142 MHz for resonant operation near 2.8 GHz operation, optical extinction down to min(log(T)) = -25 dB via Michelson-type interference, and an energy consumption down to 0.17 nW/GHz. The strain-enhancement methods presented here are applicable to study and control other strain-sensitive systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC