Optica Open
Browse

High Density, Localized Quantum Emitters in Strained 2D Semiconductors

Download (5.58 kB)
Version 2 2023-06-08, 12:54
Version 1 2023-01-12, 15:24
preprint
posted on 2023-06-08, 12:54 authored by Gwangwoo Kim, Hyong Min Kim, Pawan Kumar, Mahfujur Rahaman, Christopher E. Stevens, Jonghyuk Jeon, Kiyoung Jo, Kwan-Ho Kim, Nicholas Trainor, Haoyue Zhu, Byeong-Hyeok Sohn, Eric A. Stach, Joshua R. Hendrickson, Nicholas R Glavin, Joonki Suh, Joan M. Redwing, Deep Jariwala
Two-dimensional chalcogenide semiconductors have recently emerged as a host material for quantum emitters of single photons. While several reports on defect and strain-induced single photon emission from 2D chalcogenides exist, a bottom-up, lithography-free approach to producing a high density of emitters remains elusive. Further, the physical properties of quantum emission in the case of strained 2D semiconductors are far from being understood. Here, we demonstrate a bottom-up, scalable, and lithography-free approach to creating large areas of localized emitters with high density (~150 emitters/um2) in a WSe2 monolayer. We induce strain inside the WSe2 monolayer with high spatial density by conformally placing the WSe2 monolayer over a uniform array of Pt nanoparticles with a size of 10 nm. Cryogenic, time-resolved, and gate-tunable luminescence measurements combined with near-field luminescence spectroscopy suggest the formation of localized states in strained regions that emit single photons with a high spatial density. Our approach of using a metal nanoparticle array to generate a high density of strained quantum emitters opens a new path towards scalable, tunable, and versatile quantum light sources.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC