Optica Open
Browse

High accuracy, high dynamic range optomechanical accelerometry enabled by dual comb spectroscopy

Download (5.58 kB)
preprint
posted on 2023-07-08, 04:04 authored by D. A. Long, J. R. Stroud, B. J. Reschovsky, Y. Bao, F. Zhou, S. M. Bresler, T. W. LeBrun, D. F. Plusquellic, J. J. Gorman
Cavity optomechanical sensors can offer exceptional sensitivity; however, interrogating the cavity motion with high accuracy and dynamic range has proven to be challenging. Here we employ a dual optical frequency comb spectrometer to readout a microfabricated cavity optomechanical accelerometer, allowing for rapid simultaneous measurements of the cavity's displacement, finesse, and coupling at accelerations up to 24 g (236 m/s$^2$). With this approach, we have achieved a displacement sensitivity of 3 fm/Hz$^{1/2}$, a measurement rate of 100 kHz, and a dynamic range of 3.9 $\times$ 10$^5$ which is the highest we are aware of for a microfabricated cavity optomechanical sensor. In addition, comparisons of our optomechanical sensor coupled directly to a commercial reference accelerometer show agreement at the 0.5% level, a value which is limited by the reference's reported uncertainty. Further, the methods described herein are not limited to accelerometry but rather can be readily applied to nearly any optomechanical sensor where the combination of high speed, dynamic range, and sensitivity is expected to be enabling.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC