Optica Open
Browse
arXiv.svg (5.58 kB)

High efficient metasurface quarter-wave plate with wavefront engineering

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:56 authored by Chen Chen, Shenglun Gao, Xingjian Xiao, Xin Ye, Shengjie Wu, Wange Song, Hanmeng Li, Shining Zhu, Tao Li
Metasurfaces with local phase tuning by subwavelength elements promise unprecedented possibilities for ultra-thin and multifunctional optical devices, in which geometric phase design is widely used due to its resonant-free and large tolerance in fabrications. By arranging the orientations of anisotropic nano-antennas, the geometric phase-based metasurfaces can convert the incident spin light to its orthogonal state, and enable flexible wavefront engineering together with the function of a half-wave plate. Here, by incorporating the propagation phase, we realize another important optical device of quarter-wave plate together with the wavefront engineering as well, which is implemented by controlling both the cross- and co-polarized light simultaneously with a singlet metasurface. Highly efficient conversion of the spin light to a variety of linearly polarized light are obtained for meta-holograms, metalens focusing and imaging in blue light region. Our work provides a new strategy for efficient metasurfaces with both phase and polarization control, and enriches the functionalities of metasurface devices for wider application scenarios.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC