Optica Open
Browse
arXiv.svg (5.58 kB)

High throughput spatially sensitive single-shot quantitative phase microscopy

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:10 authored by Azeem Ahmad, Vishesh Dubey, Nikhil Jayakumar, Anowarul Habib, Ankit Butola, Mona Nystad, Ganesh Acharya, Purusotam Basnet, Dalip Singh Mehta, Balpreet Singh Ahluwalia
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low coherence length light sources are generally implemented to achieve high spatial phase sensitivity in QPM at the cost of either reduced temporal resolution or smaller field of view (FOV). On the contrary, high temporal coherence light sources like lasers are capable of exploiting the full FOV of the QPM systems at the expense of less spatial phase sensitivity. In the present work, we employed pseudo-thermal light source (PTLS) in QPM which overcomes the limitations of conventional light sources. The capabilities of PTLS over conventional light sources are systematically studied and demonstrated on various test objects like USAF resolution chart and thin optical waveguide (height ~ 8 nm). The spatial phase sensitivity of QPM in case of PTLS is measured to be equivalent to that for white light source. The high-speed and large FOV capabilities of PTLS based QPM is demonstrated by high-speed imaging of live sperm cells that is limited by the camera speed and by imaging extra-ordinary large FOV phase imaging on histopathology placenta tissue samples.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC