Optica Open
Browse
arXiv.svg (5.58 kB)

Higher-order photonic topological states in surface-wave photonic crystals

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:50 authored by Li Zhang, Yihao Yang, Pengfei Qin, Qiaolu Chen, Fei Gao, Erping Li, Jian-Hua Jiang, Baile Zhang, Hongsheng Chen
Photonic topological states have revolutionized our understanding on the propagation and scattering of light. Recent discovery of higher-order photonic topological insulators opens an emergent horizon for zero-dimensional topological corner states. However, the previous realizations of higher-order photonic topological insulators suffer from either a limited operational frequency range due to the lumped components involved or a bulky structure with a large footprint, which are unfavorable for future integrated photonics. To overcome these limitations, we hereby experimentally demonstrate a planar surface-wave photonic crystal realization of two-dimensional higher-order topological insulators. The surface-wave photonic crystals exhibit a very large bulk bandgap (a bandwidth of 28%) due to multiple Bragg scatterings and host one-dimensional gapped edge states described by massive Dirac equations. The topology of those higher-dimensional photonic bands leads to the emergence of zero-dimensional corner states, which provide a route toward robust cavity modes for scalable, integrated photonic chips and an interface for the control of light-matter interaction.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC