posted on 2025-05-08, 16:01authored byYichen Shen, Ping-Yen Hsieh, Dhruv Srinivasan, Antoine Henry, Gregory Moille, Sashank Kaushik Sridhar, Alessandro Restelli, You-Chia Chang, Kartik Srinivasan, Thomas A. Smith, Avik Dutt
Squeezed light offers genuine quantum advantage in enhanced sensing and quantum computation; yet the level of squeezing or quantum noise reduction generated from nanophotonic chips has been limited. In addition to strong quantum noise reduction, key desiderata for such a nanophotonic squeezer include frequency agility or tunability over a broad frequency range, and simultaneous operation in many distinct, well-defined quantum modes (qumodes). Here we present a strongly overcoupled silicon nitride squeezer based on a below-threshold optical parametric amplifier (OPA) that produces directly detected squeezing of 5.6 dB $\pm$ 0.2 dB, surpassing previous demonstrations in both continuous-wave and pulsed regimes. We introduce a seed-assisted detection technique into such nanophotonic squeezers that reveals a quantum frequency comb (QFC) of 16 qumodes, with a separation of 11~THz between the furthest qumode pair, while maintaining a strong squeezing. Additionally, we report spectral tuning of a qumode comb pair over one free-spectral range of the OPA, thus bridging the spacing between the discrete modes of the QFC. Our results significantly advance both the generation and detection of nanophotonic squeezed light in a broadband and multimode platform, establishing a scalable, chip-integrated path for compact quantum sensors and continuous-variable quantum information processing systems.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.