Optica Open
Browse
arXiv.svg (5.58 kB)

Hybrid Si-GaAs photonic crystal cavity for lasing and bistability

Download (5.58 kB)
preprint
posted on 2023-02-09, 17:01 authored by Mohammad Habibur Rahaman, Chang-Min Lee, Mustafa Atabey Buyukkaya, Yuqi Zhao, Edo Waks
The heterogeneous integration of silicon with III-V materials provides a way to overcome silicon's limited optical properties toward a broad range of photonic applications. Hybrid modes are a promising way to make heterogeneous Si/III-V devices, but it is still unclear how to engineer these modes to make photonic crystal cavities. Herein, using 3D finite-difference time-domain simulation, a hybrid Si-GaAs photonic crystal cavity design enables cavity mode confinement in GaAs without directly patterning that operates at telecom wavelengths. The hybrid cavity consists of a patterned silicon waveguide nanobeam that is evanescently coupled to a GaAs slab with quantum dots. We show that by engineering the hybrid modes, we can control the degree of coupling to the active material, which leads to a tradeoff between cavity quality factor and optical gain and nonlinearity. With this design, we demonstrate a cavity mode in the Si-GaAs heterogeneous region, which enables strong interaction with the quantum dots in the GaAs slab for applications such as low-power-threshold lasing and optical bistability (156 nW and 18.1 ${\mu}$W, respectively). This heterogeneous integration of an active III-V material with silicon via a hybrid cavity design suggests a promising approach for achieving on-chip light generation and low-power nonlinear platforms.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC