Optica Open
Browse

Hybrid electromagnetic toroidal vortices

Download (5.58 kB)
preprint
posted on 2024-08-22, 16:00 authored by Ren Wang, Beier Ying, Shuai Shi, Junsong Wang, Bing-Zhong Wang, Musheng Liang, Yijie Shen
The ubiquitous occurrence of toroidal vortices or vortex rings in fluid-dynamic scenarios in nature has garnered significant attention of scientific frontier, whilst, the electromagnetic counterparts of which were only proposed recently with two distinct manifestations: vector toroidal pulses [Nat. Photon. 16, 523 (2022)] and scalar phase toroidal vortices [Nat. Photon. 16, 519 (2022)]. This dichotomy in the understanding of toroidal vortex phenomena has prompted a reassessment of their fundamental nature. Herein, we theoretically propose a novel form of electromagnetic toroidal vortex solutions, that uniquely integrate both scalar and vector characteristics, challenging the prevailing notion of their mutual exclusivity. We also present the experimental generation of the hybrid toroidal vortex pulses by a compact coaxial horn emitter augmented with a metasurface. This methodology not only demonstrates the feasibility of creating such complex vortex structures but also endows the resulting pulses with unique properties, including the coexistence of transverse orbital angular momentum, electromagnetic vortex streets, and topological skyrmion textures. These attributes introduce new dimensions in topologically complex structured waves, opening avenues for enhanced free-space information transmission, topologically nontrivial light-matter interaction and microscopy techniques.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC