Optica Open
Browse

Hybrid plasmonic modes for enhanced refractive index sensing

Download (5.58 kB)
preprint
posted on 2023-04-21, 16:01 authored by Bereket Dalga Dana, Ji Boyu, Jingquan Lin, Longnan Li, Alemayehu Nana Koya, Wei Li
Compared to single nanoparticles, strongly coupled plasmonic nanoparticles provide attractive advantages owing to their ability to exhibit multiple resonances with unique spectral features and higher local field intensity. These enhanced plasmonic properties of coupled metal nanoparticles have been used for various applications including realization of strong light-matter interaction, photocatalysis, and sensing applications. In this article, we review the basic physics of hybrid plasmonic modes in coupled metallic nanodimers and assess their potentials for refractive index sensing. In particular, we overview various modes of hybrid plasmons including bonding and antibonding modes in symmetric nanodimers, Fano resonances in asymmetric nanodimers, charge transfer plasmons in linked nanoparticle dimers, hybrid plasmon modes in nanoshells, and gap modes in particle-on-mirror configurations. Beyond the dimeric nanosystems, we also showcase the potentials of hybrid plasmonic modes in periodic nanoparticle arrays for sensing applications. Finally, based on the critical assessment of the recent researches on coupled plasmonic modes, the outlook on the future prospects of hybrid plasmon based refractometric sensing are discussed We believe that, given their tunable resonances and ultranarrow spectral signatures, coupled metal nanoparticles are expected to play key roles in developing precise plasmonic nanodevices with extreme sensitivity.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC