posted on 2023-09-02, 16:00authored bySydney Mason, Ileana-Cristina Benea-Chelmus
Spatial light modulators have desirable applications in sensing and free space communication because they create an interface between the optical and electronic realms. Electro-optic modulators allow for high-speed intensity manipulation of an electromagnetic wavefront. However, most surfaces of this sort pose limitations due to their ability to modulate intensity rather than phase. Here we investigate an electro-optic modulator formed from a silicon-organic Huygens' metasurface. In a simulation-based study, we discover a metasurface design immersed in high-performance electro-optic molecules that can achieve near-full resonant transmission with phase coverage over the full 2$\pi$ range. Through the electro-optic effect, we show 140$^\circ$ (0.79$\pi$) modulation over a range of -100 to 100 V at 1330 nm while maintaining near-constant transmitted field intensity (between 0.66 and 0.8). These results potentiate the fabrication of a high-speed spatial light modulator with the resolved parameters.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.