Optica Open
Browse

Hyperspectral In-Memory Computing with Optical Frequency Combs and Programmable Optical Memories

Download (5.58 kB)
preprint
posted on 2023-10-19, 16:00 authored by Mostafa Honari Latifpour, Byoung Jun Park, Yoshihisa Yamamoto, Myoung-Gyun Suh
The rapid advancements in machine learning across numerous industries have amplified the demand for extensive matrix-vector multiplication operations, thereby challenging the capacities of traditional von Neumann computing architectures. To address this, researchers are currently exploring alternatives such as in-memory computing systems to develop faster and more energy-efficient hardware. In particular, there is renewed interest in computing systems based on optics, which could potentially handle matrix-vector multiplication in a more energy-efficient way. Despite promising initial results, developing a highly parallel, programmable, and scalable optical computing system capable of rivaling electronic computing hardware still remains elusive. In this context, we propose a hyperspectral in-memory computing architecture that integrates space multiplexing with frequency multiplexing of optical frequency combs and uses spatial light modulators as a programmable optical memory, thereby boosting the computational throughput and the energy efficiency. We have experimentally demonstrated multiply-accumulate operations with higher than 4-bit precision in both matrix-vector and matrix-matrix multiplications, which suggests the system's potential for a wide variety of deep learning and optimization tasks. This system exhibits extraordinary modularity, scalability, and programmability, effectively transcending the traditional limitations of optics-based computing architectures. Our approach demonstrates the potential to scale beyond peta operations per second, marking a significant step towards achieving high-throughput energy-efficient optical computing.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC