Three-dimensional (3D) artificial metacrystals host rich topological phases, such as Weyl points, nodal rings and 3D photonic topological insulators. These topological states enable a wide range of applications, including 3D robust waveguide, one-way fiber and negative refraction of surface wave. However, these carefully designed metacrystals are usually very complex, hindering their extension to nanoscale photonic systems. Here, we theoretically proposed and experimentally realized an ideal nodal ring in visible region using a simple 1D photonic crystal. The pi Berry phase around the ring is manifested by a 2pi reflection phase's winding and the resultant drumhead surface states. By breaking the inversion symmetry, the nodal ring can be gapped and the pi-Berry phase would diffuse into a toroidal shaped Berry flux, resulting in photonic ridge states (the 3D extension of quantum valley Hall states). Our results provide a simple and feasible platform for exploring 3D topological physics and their potential applications in nanophotonics.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.