Optica Open
Browse

Illumination Pattern Design with Deep Learning for Single-Shot Fourier Ptychographic Microscopy

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:25 authored by Yi Fei Cheng, Megan Strachan, Zachary Weiss, Moniher Deb, Dawn Carone, Vidya Ganapati
Fourier ptychographic microscopy allows for the collection of images with a high space-bandwidth product at the cost of temporal resolution. In Fourier ptychographic microscopy, the light source of a conventional widefield microscope is replaced with a light-emitting diode (LED) matrix, and multiple images are collected with different LED illumination patterns. From these images, a higher-resolution image can be computationally reconstructed without sacrificing field-of-view. We use deep learning to achieve single-shot imaging without sacrificing the space-bandwidth product, reducing the acquisition time in Fourier ptychographic microscopy by a factor of 69. In our deep learning approach, a training dataset of high-resolution images is used to jointly optimize a single LED illumination pattern with the parameters of a reconstruction algorithm. Our work paves the way for high-throughput imaging in biological studies.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC