Optica Open
Browse
- No file added yet -

Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:35 authored by H. T. Stinson, A. Sternbach, O. Najera, R. Jing, A. S. Mcleod, T. V. Slusar, A. Mueller, L. Anderegg, H. T. Kim, M. Rozenberg, D. N. Basov
We use apertureless scattering near-field optical microscopy (SNOM) to investigate the nanoscale optical response of vanadium dioxide (VO2) thin films through a temperature-induced insulator-to-metal transition (IMT). We compare images of the transition at both mid-infrared (MIR) and terahertz (THz) frequencies, using a custom-built broadband THz-SNOM compatible with both cryogenic and elevated temperatures. We observe that the character of spatial inhomogeneities in the VO2 film strongly depends on the probing frequency. In addition, we find that individual insulating (or metallic) domains have a temperature-dependent optical response, in contrast to the assumptions of a classical first-order phase transition. We discuss these results in light of dynamical mean-field theory calculations of the dimer Hubbard model recently applied to VO2.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC