Optica Open
Browse

Imaging the transverse spin density of light via electromagnetically induced transparency

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:15 authored by Jinhong Liu, Jinze Wu
When a light beam is strongly laterally confined, its field vector spins in a plane not perpendicular to the propagation direction, leading to the presence of transverse spin angular momentum, which plays a crucial role in the field of chiral quantum optics. The existing techniques to measure the transverse spin density require complex setups and sophisticated time-consuming procedures. Here, we propose a scheme to measure the transverse spin density of an optical field in real time using a multi-level atomic medium. The susceptibility of the medium is spatially modulated by the transverse spin via electromagnetically induced transparency. The distribution of the transverse spin is then extracted by measuring the distributions of the Stokes parameters of another collimated probe field.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC