Version 2 2023-06-08, 13:04Version 2 2023-06-08, 13:04
Version 1 2023-04-22, 16:01Version 1 2023-04-22, 16:01
preprint
posted on 2023-06-08, 13:04authored byXin Mu, Fu-Der Chen, Ka My Dang, Michael G. K. Brunk, Jianfeng Li, Hannes Wahn, Andrei Stalmashonak, Peisheng Ding, Xianshu Luo, Hongyao Chua, Guo-Qiang Lo, Joyce K. S. Poon, Wesley D. Sacher
Advances in chip-scale photonic-electronic integration are enabling a new generation of foundry-manufacturable implantable silicon neural probes incorporating nanophotonic waveguides and microelectrodes for optogenetic stimulation and electrophysiological recording in neuroscience research. Further extending neural probe functionalities with integrated microfluidics is a direct approach to achieve neurochemical injection and sampling capabilities. In this work, we use two-photon polymerization 3D printing to integrate microfluidic channels onto photonic neural probes, which include silicon nitride nanophotonic waveguides and grating emitters. The customizability of 3D printing enables a unique geometry of microfluidics that conforms to the shape of each neural probe, enabling integration of microfluidics with a variety of existing neural probes while avoiding the complexities of monolithic microfluidics integration. We demonstrate the photonic and fluidic functionalities of the neural probes via fluorescein injection in agarose gel and photoloysis of caged fluorescein in solution and in flxed brain tissue.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.