Ultrafast imaging is essential in physics and chemistry to investigate the femtosecond dynamics of nonuniform samples or of phenomena with strong spatial variations. It relies on observing the phenomena induced by an ultrashort laser pump pulse using an ultrashort probe pulse at a later time. Recent years have seen the emergence of very successful ultrafast imaging techniques of single non-reproducible events with extremely high frame rate, based on wavelength or spatial frequency encoding. However, further progress in ultrafast imaging towards high spatial resolution is hampered by the lack of characterization of weak probe beams. Because of the difference in group velocities between pump and probe in the bulk of the material, the determination of the absolute pump-probe delay depends on the sample position. In addition, pulse-front tilt is a widespread issue, unacceptable for ultrafast imaging, but which is conventionally very difficult to evaluate for the low-intensity probe pulses. Here we show that a pump-induced micro-grating generated from the electronic Kerr effect provides a detailed in-situ characterization of a weak probe pulse. It allows solving the two issues. Our approach is valid whatever the transparent medium, whatever the probe pulse polarization and wavelength. Because it is nondestructive and fast to implement, this in-situ probe diagnostic can be repeated to calibrate experimental conditions, particularly in the case where complex wavelength, spatial frequency or polarization encoding is used. We anticipate that this technique will enable previously inaccessible spatiotemporal imaging in all fields of ultrafast science and high field physics at the micro- and nanoscale.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.