Optica Open
preprint.pdf (11.74 MB)

Informing ocean color inversion products by seeding with ancillary observations

Download (11.74 MB)
posted on 2023-08-17, 08:42 authored by Kelsey Bisson, Paul Jeremy Werdell, Alison Chase, Sasha Kramer, B. B. Cael, Emmanuel Boss, Lachlan McKinna, Michael Behrenfeld
Ocean reflectance inversion algorithms provide many products used in ecological and biogeochemical models. While a number of different inversion approaches exist, they all use only spectral remote-sensing reflectances (R_rs(λ)) as input to derive inherent optical properties (IOPs) in optically deep oceanic waters. However, information content in R_rs(λ) is limited, so spectral inversion algorithms may benefit from additional inputs. Here, we test the simplest possible case of seeding an inversion scheme (the Generalized Inherent Optical Property algorithm framework default configuration (GIOP-DC)) with both simulated and satellite datasets of an independently known or estimated IOP, the particulate backscattering coefficient at 532 nm (b_bp(532)). We find that the seeded-inversion absorption products are substantially different and more accurate than those generated by the standard implementation. On global scales, seasonal patterns in seeded-inversion absorption products vary by more than 50% compared to absorption from the GIOP-DC. This study proposes one framework in which to consider the next generation of ocean color inversion schemes by highlighting the possibility of adding information collected with an independent sensor.


Funder Name

NASA (80NSSC20K0970,80NSSC18K0957)

Preprint ID


Usage metrics