Optica Open
Browse

Inline-Amplification-Free Time Transfer Utilizing Waveform-Resolved Single-Photon Detection

Download (5.58 kB)
preprint
posted on 2024-12-26, 17:00 authored by Yufei Zhang, Ziyang Chen, Bin Luo, Hong Guo
High-precision time transfer over a long haul of fiber plays a significant role in many fields. The core method, namely cascading relay nodes for the compensation of signal attenuation and dispersion, is however insufficient to deal with crucial point-to-point transfer scenarios, such as harsh environments with extremely deficient infrastructure and emergency conditions. In long-distance signal transmission without any inline amplifiers, the high loss of the optical fiber link becomes the primary limiting factor, and direct use of traditional photodetectors at the receiving end will bring about a significant drop in the stability of detected signals. Here we propose a waveform-resolved single photon detection technique and experimentally perform tomography on the weak transferred signal with an average photon number of just 0.617 per pulse. By adopting this technique, we achieve the time deviation of 95.68 ps and 192.58 ps at 200 km and 300 km respectively at an averaging time of 1 s, overcoming the technical lower bound induced by traditional photodetectors. This work lays the foundation for through-type time transfer with high precision in those significant inline-amplification-free scenarios.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC