Optica Open
Browse

Integrated Electro-Optic Isolator on Thin Film Lithium Niobate

Download (5.58 kB)
Version 2 2023-06-08, 13:00
Version 1 2023-01-10, 03:26
preprint
posted on 2023-06-08, 13:00 authored by Mengjie Yu, Rebecca Cheng, Christian Reimer, Lingyan He, Kevin Luke, Eric Puma, Linbo Shao, Amirhassan Shams-Ansari, Hannah R. Grant, Leif Johansson, Mian Zhang, Marko Lončar
Optical isolator is an indispensable component of almost any optical system and is used to protect a laser from unwanted reflections for phase-stable coherent operation. The development of chip-scale optical systems, powered by semiconductor lasers integrated on the same chip, has resulted in a need for a fully integrated optical isolator. However, conventional approaches based on application of magneto-optic materials to break the reciprocity and provide required isolation have significant challenges in terms of material processing and insertion loss. As a result, many magnetic-free approaches have been explored, including acousto-optics, optical nonlinearity, and electro-optics. However, to date, the realization of an integrated isolator with low insertion loss, high isolation ratio, broad bandwidth, and low power consumption on a monolithic material platform is still absent. Here we realize non-reciprocal traveling-wave EO-based isolator on thin-film LN, enabling maximum optical isolation of 48 dB and an on-chip insertion loss of 0.5 dB using a single-frequency microwave drive at 21-dBm RF power. The isolation ratio is verified to be larger than 37 dB across a tunable optical wavelength range from 1510 to 1630 nm. We verify that our hybrid DFB laser - LN isolator module successfully protects the single-mode operation and the linewidth of the DFB laser from reflection. Our result is a significant step towards a practical high-performance optical isolator on chip.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC