arXiv.svg (5.58 kB)
Download fileIntegrated optical frequency division for stable microwave and mmWave generation
preprint
posted on 2023-05-25, 16:01 authored by Shuman Sun, Beichen Wang, Kaikai Liu, Mark Harrington, Fatemehsadat Tabatabaei, Ruxuan Liu, Jiawei Wang, Samin Hanifi, Jesse S. Morgan, Mandana JahanbozorgiThe generation of ultra-low noise microwave and mmWave in miniaturized, chip-based platforms can transform communication, radar, and sensing systems. Optical frequency division that leverages optical references and optical frequency combs has emerged as a powerful technique to generate microwaves with superior spectral purity than any other approaches. We demonstrate a miniaturized optical frequency division system that can potentially transfer the approach to a CMOS-compatible integrated photonic platform. Phase stability is provided by a large-mode-volume, planar-waveguide-based optical reference coil cavity and is divided down from optical to mmWave frequency by using soliton microcombs generated in a waveguide-coupled microresonator. Besides achieving record-low phase noise for integrated photonic microwave/mmWave oscillators, these devices can be heterogeneously integrated with semiconductor lasers, amplifiers, and photodiodes, holding the potential of large-volume, low-cost manufacturing for fundamental and mass-market applications.