Optica Open
Browse
- No file added yet -

Integrated photonic nonreciprocal devices based on susceptibility-programmable medium

Download (5.58 kB)
preprint
posted on 2024-09-05, 16:00 authored by Yan-Lei Zhang, Ming Li, Xin-Biao Xu, Zhu-Bo Wang, Chun-Hua Dong, Guang-Can Guo, Chang-Ling Zou, Xu-Bo Zou
The switching and control of optical fields based on nonlinear optical effects are often limited to relatively weak nonlinear susceptibility and strong optical pump fields. Here, an optical medium with programmable susceptibility tensor based on polarizable atoms is proposed. Under a structured optical pump, the ground state population of atoms could be efficiently controlled by tuning the chirality and intensity of optical fields, and thus the optical response of the medium is programmable in both space and time. We demonstrate the potential of this approach by engineering the spatial distribution of the complex susceptibility tensor of the medium in photonic structures to realize nonreciprocal optical effects. Specifically, we investigate the advantages of chiral interaction between atoms and photons in an atom-cladded waveguide, theoretically showing that reconfigurable, strong, and fastly switchable isolation of optical signals in a selected optical mode is possible. The susceptibility-programmable medium provides a promising way to efficiently control the optical field, opening up a wide range of applications for integrated photonic devices and structured optics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC