Optica Open
Browse
arXiv.svg (5.58 kB)

Integrated photonics modular arithmetic processor

Download (5.58 kB)
preprint
posted on 2023-06-22, 16:02 authored by Yuepeng Wu, Hongxiang Guo, Bowen Zhang, Jifang Qiu, Zhisheng Yang, Jian Wu
Integrated photonics computing has emerged as a promising approach to overcome the limitations of electronic processors in the post-Moore era, capitalizing on the superiority of photonic systems. However, present integrated photonics computing systems face challenges in achieving high-precision calculations, consequently limiting their potential applications, and their heavy reliance on analog-to-digital (AD) and digital-to-analog (DA) conversion interfaces undermines their performance. Here we propose an innovative photonic computing architecture featuring scalable calculation precision and a novel photonic conversion interface. By leveraging Residue Number System (RNS) theory, the high-precision calculation is decomposed into multiple low-precision modular arithmetic operations executed through optical phase manipulation. Those operations directly interact with the digital system via our proposed optical digital-to-phase converter (ODPC) and phase-to-digital converter (OPDC). Through experimental demonstrations, we showcase a calculation precision of 9 bits and verify the feasibility of the ODPC/OPDC photonic interface. This approach paves the path towards liberating photonic computing from the constraints imposed by limited precision and AD/DA converters.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC