Optica Open
Browse

Interaction-enhanced transmission imaging with Rydberg atoms

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:49 authored by Xiaoguang Huo, J. F. Chen, Jing Qian, Weiping Zhang
Atomic-scale imaging offers a reliable tool to directly measure the movement of microscopic particles. We present a scheme for achieving a nondestructive and ultrasensitive imaging of Rydberg atoms within an ensemble of cold probe atoms. This is made possible by the interaction-enhanced electromagnetically induced transparency at off-resonance which enables an extremely narrow absorption dip for an enhanced transmission. Through the transmission of a probe beam, we obtain the distribution of Rydberg atoms with both high spatial resolution and fast response, which ensures a more precise real-time imaging. Increased resolution compared to the prior interaction-enhanced imaging technique allows us to accurately locate the atoms by adjusting the probe detuning only. This new type of interaction-enhanced transmission imaging can be utilized to other impure systems containing strong many-body interactions, and is promising to develop super-resolution microscopy of cold atoms.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC