Optica Open
Browse

Interaction of carrier envelope phase-stable laser pulses with graphene: the transition from the weak-field to the strong-field regime

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:06 authored by Christian Heide, Tobias Boolakee, Takuya Higuchi, Heiko B. Weber, Peter Hommelhoff
Ultrafast control of electron dynamics in solid state systems has recently found particular attention. By increasing the electric field strength of laser pulses, the light-matter interaction in solids might turn from a perturbative into a novel non-perturbative regime, where interband transitions from the valence to the conduction band become strongly affected by intraband motion. We have demonstrated experimentally and numerically that this combined dynamics can be controlled in graphene with the electric field waveform of phase-stabilized few-cycle laser pulses. Here we show new experimental data and matching simulation results at comparably low optical fields, which allows us to focus on the highly interesting transition regime where the light-matter interaction turns from perturbative to non-perturbative. We find a 5th order power-law scaling of the laser induced waveform-dependent current at low optical fields, which breaks down for higher optical fields, indicating the transition.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC