Optica Open
Browse

Interpretable inverse-designed cavity for on-chip nonlinear and quantum optics

Download (5.58 kB)
preprint
posted on 2023-08-09, 16:00 authored by Zhetao Jia, Wayesh Qarony, Jagang Park, Sean Hooten, Difan Wen, Yertay Zhiyenbayev, Matteo Seclì, Walid Redjem, Scott Dhuey, Adam Schwartzberg, Eli Yablonovitch, Boubacar Kanté
Inverse design is a powerful tool in wave-physics and in particular in photonics for compact, high-performance devices. To date, applications have mostly been limited to linear systems and it has rarely been investigated or demonstrated in the nonlinear regime. In addition, the "black box" nature of inverse design techniques has hindered the understanding of optimized inverse-designed structures. We propose an inverse design method with interpretable results to enhance the efficiency of on-chip photon generation rate through nonlinear processes by controlling the effective phase-matching conditions. We fabricate and characterize a compact, inverse-designed device using a silicon-on-insulator platform that allows a spontaneous four-wave mixing process to generate photon pairs at 1.1MHz with a coincidence to accidental ratio of 162. Our design method accounts for fabrication constraints and can be used for scalable quantum light sources in large-scale communication and computing applications.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC