Optica Open
Browse

Inverse Design of Polaritonic Devices

Download (5.58 kB)
preprint
posted on 2024-07-26, 16:00 authored by Oliver Kuster, Yannick Augenstein, Carsten Rockstuhl, Thomas Jebb Sturges
Polaritons, arising from the strong coupling between excitons and photons within microcavities, hold promise for optoelectronic and all-optical devices. They have found applications in various domains, including low-threshold lasers and quantum information processing. To realize complex functionalities, non-intuitive designs for polaritonic devices are required. In this contribution, we use finite-difference time-domain simulations of the dissipative Gross-Pitaevskii equation, written in a differentiable manner, and combine it with an adjoint formulation. Such a method allows us to use topology optimization to engineer the potential landscape experienced by polariton condensates to tailor its characteristics on demand. The potential directly translates to a blueprint for a functional device, and various fabrication and optical control techniques can experimentally realize it. We inverse-design a selection of polaritonic devices, i.e., a structure that spatially shapes the polaritons into a flat-top distribution, a metalens that focuses a polariton, and a nonlinearly activated isolator. The functionalities are preserved when employing realistic fabrication constraints such as minimum feature size and discretization of the potential. Our results demonstrate the utility of inverse design techniques for polaritonic devices, providing a stepping stone toward future research in optimizing systems with complex light-matter interactions.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC