Optica Open
Browse

Inverse design of the transmission matrix in a random system using Reinforcement Learning

Download (5.58 kB)
preprint
posted on 2025-06-18, 16:00 authored by Yuhao Kang
This work presents an approach to the inverse design of scattering systems by modifying the transmission matrix using reinforcement learning. We utilize Proximal Policy Optimization to navigate the highly non-convex landscape of the object function to achieve three types of transmission matrices: (1) Fixed-ratio power conversion and zero-transmission mode in rank-1 matrices, (2) exceptional points with degenerate eigenvalues and unidirectional mode conversion, and (3) uniform channel participation is enforced when transmission eigenvalues are degenerate.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC