posted on 2023-11-30, 18:35authored byGregory Moille, Xiyuan Lu, Ashutosh Rao, Qing Li, Daron A. Westly, Leonardo Ranzani, Scott B. Papp, Mohammad Soltani, Kartik Srinivasan
We present measurements of silicon nitride nonlinear microresonators and frequency comb generation at cryogenic temperatures as low as 7~K. The resulting two orders of magnitude reduction in the thermo-refractive coefficient relative to room-temperature enables direct access to single bright Kerr soliton states through adiabatic frequency tuning of the pump laser while remaining in thermal equilibrium. Our experimental results, supported by theoretical modeling, show that single solitons are easily accessible at temperatures below 60~K for the microresonator device under study. We further demonstrate that the cryogenic temperature primarily impacts the thermo-refractive coefficient. Other parameters critical to the generation of solitons, such as quality factor, dispersion, and effective nonlinearity, are unaltered. Finally, we discuss the potential improvement in thermo-refractive noise resulting from cryogenic operation. The results of this study open up new directions in advancing chip-scale frequency comb optical clocks and metrology at cryogenic temperatures.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.