Optica Open
Browse

Kirigami-based Flexible Metasurface with Reconfigurable Intrinsic Chirality from Zero to Near-unity

Download (5.58 kB)
preprint
posted on 2025-10-11, 16:01 authored by Yiyi Yao, Shijie Kang, Aoning Luo, Jiusi Yu, Ken Qin, Xiexuan Zhang, Jiayu Fan, Xusheng Xia, Haitao Li, Xiaoxiao Wu
Chiral responses in electromagnetic metasurfaces are typically categorized as extrinsic, resulting from asymmetric interactions between the structure and incident waves, and intrinsic, arising from three-dimensional symmetry breaking of the unit cell. However, most existing metasurface designs target only one type of chirality and lack a unified, continuously tunable platform for broader chiroptical control. To address this limitation, the designed kirigami-based flexible metasurface is proposed for dynamic, continuous modulation of chirality, which expands the control scope to both extrinsic and intrinsic chiral responses within a single, reconfigurable platform. Initially, the unfolded metasurface exhibits extrinsic chirality under oblique incidence. By introducing well-designed kirigami-based cuts and folds, the metasurface transitions from a planar and achiral configuration to a three-dimensional chiral geometry that breaks the mirror symmetry, thereby exhibiting tunable intrinsic chirality and asymmetric extrinsic chirality. As the folding angle increases, the resulting deformation enables continuous tuning of the chiral response, with circular dichroism and its asymmetry under oblique incidences progressively increasing and reaching pronounced levels across the X-band. Our work provides a lightweight, easy-fabricated, and mechanically reconfigurable metasurface, which offers strong potential for future development in adaptive photonic systems and advanced chiroptical technologies.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC