posted on 2024-02-24, 17:00authored bySivan Trajtenberg-Mills, Mohamed ElKabbash, Cole J. Brabec, Christopher L. Panuski, Ian Christen, Dirk Englund
Programmable spatiotemporal control of light is crucial for advancements in optical communications, imaging, and quantum technologies. Commercial spatial light modulators (SLMs) typically have megapixel-scale apertures but are limited to ~kHz operational speeds. Developing a device that controls a similar number of spatial modes at high speeds could potentially transform fields such as imaging through scattering media, quantum computing with cold atoms and ions, and high-speed machine vision, but to date remains an open challenge. In this work we introduce and demonstrate a free-form, resonant electro-optic (EO) modulator with megapixel apertures using CMOS integration. The optical layer features a Lithium Niobate (LN) thin-film integrated with a photonic crystal (PhC), yielding a guided mode resonance (GMR) with a Q-factor>1000, a field overlap coefficient ~90% and a 1.6 GHz 3-dB modulation bandwidth (detector limited). To realize a free-form and scalable SLM, we fabricate the PhC via interference lithography and develop a procedure to bond the device to a megapixel CMOS backplane. We identify limitations in existing EO materials and CMOS backplanes that must be overcome to simultaneously achieve megapixel-scale, GHz-rate operation. The `LN on Silicon' (LNoS) architecture we present is a blueprint towards realizing such devices.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.