posted on 2023-01-10, 03:03authored byZhihao Lan, Menglin L. N. Chen, Jian Wei You, Wei E. I. Sha
Topological photonic edge states are conventionally formed at the interface between two domains of topologically trivial and nontrivial photonic crystals. Recent works exploiting photonic quantum Hall and quantum valley Hall effects have shown that large-area topological waveguide states could be created in a three-layer topological heterostructure that consists of a finite-width domain featuring Dirac cone sandwiched between two domains of photonic crystals with opposite topological properties. In this work, we show that a new kind of large-area topological waveguide states could be created employing the photonic analogs of quantum spin Hall effect. Taking the well-used Wu-Hu model in topological photonics as an example, we show that sandwiching a finite-width domain of photonic crystals featuring double Dirac cone between two domains of expanded and shrunken unit cells could lead to the emergence of large-area topological helical waveguide states distributed uniformly in the middle domain. Importantly, we unveil a power-law scaling regarding to the size of the bandgap within which the large-area helical states reside as a function of the width of the middle domain, which implies that these large-area modes in principle could exist in the middle domain with arbitrary width. Moreover, pseudospin-momentum locking unidirectional propagations and robustness of these large-area waveguide modes against sharp bends are explicitly demonstrated. Our work enlarges the photonic systems and platforms that could be utilized for large-area-mode enabled topologically waveguiding.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.