Optica Open
Browse
- No file added yet -

Large-scale photonic natural language processing

Download (5.58 kB)
preprint
posted on 2023-01-12, 16:09 authored by Carlo Michele Valensise, Ivana Grecco, Davide Pierangeli, Claudio Conti
Modern machine learning applications require huge artificial networks demanding in computational power and memory. Light-based platforms promise ultra-fast and energy-efficient hardware, which may help in realizing next-generation data processing devices. However, current photonic networks are limited by the number of input-output nodes that can be processed in a single shot. This restricted network capacity prevents their application to relevant large-scale problems such as natural language processing. Here, we realize a photonic processor with a capacity exceeding $1.5 \times 10^{10}$ optical nodes, more than one order of magnitude larger than any previous implementation, which enables photonic large-scale text encoding and classification. By exploiting the full three-dimensional structure of the optical field propagating in free space, we overcome the interpolation threshold and reach the over-parametrized region of machine learning, a condition that allows high-performance natural language processing with a minimal fraction of training points. Our results provide a novel solution to scale-up light-driven computing and open the route to photonic language processing.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC