posted on 2023-11-30, 18:37authored byHongtao Hu, Seyedreza Larimian, Sonia Erattupuzha, Jin Wen, Andrius Baltuška, Markus Kitzler-Zeiler, Xinhua Xie
We experimentally investigate laser-induced dissociative recombination of CO$_2$ in linearly polarized strong laser fields with coincidence measurements. Our results show laser-induced dissociation processes originate from an electron recombination process after laser-induced double ionization. After double ionization of CO$_2$, one electron is recaptured by the CO$_2^{2+}$ and localized to O$^+$ or CO$^+$ in the following dissociation process. We found that the probability of electron localization to O$^{+}$ is much higher than that to CO$^+$. Further, our measurements reveal that the recombination probability of the first ionized electron is three times as high as that of the second ionized electron. Our work may trigger further experimental and theoretical studies on involved nuclear and electron dynamics in laser-induced dissociative recombination of molecules and their applications in controlling molecular dissociation with ultrashort laser pulses.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.