Optica Open
Browse

Laser Cavity-Soliton Micro-Combs

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:00 authored by Hualong Bao, Andrew Cooper, Maxwell Rowley, Luigi Di Lauro, Juan Sebastian Totero Gongora, Sai T. Chu, Brent E. Little, Gian-Luca Oppo, Roberto Morandotti, David J. Moss, Benjamin Wetzel, Marco Peccianti, Alessia Pasquazi
The field of micro-cavity based frequency combs, or 'micro-combs'[1,2], has recently witnessed many fundamental breakthroughs[3-19] enabled by the discovery of temporal cavity-solitons, self-localised waves sustained by a background of radiation usually containing 95% of the total power[20]. Simple methods for their efficient generation and control are currently researched to finally establish micro-combs as out-of-the-lab widespread tools[21]. Here we demonstrate micro-comb laser cavity-solitons, an intrinsically highly-efficient, background free class of solitary waves. Laser cavity-solitons have underpinned key breakthroughs in semiconductor lasers[22,23] and photonic memories[24-26]. By merging their properties with the physics of both micro-resonators[1,2] and multi-mode systems[27], we provide a new paradigm for the generation and control of self-localised pulses in micro-cavities. We demonstrate 50 nm wide soliton combs induced with average powers one order of magnitude lower than those typically required by state-of-the-art approaches[26]. Furthermore, we can tune the repetition-rate to well over a megahertz with no-active feedback.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC