Optica Open
Browse
arXiv.svg (5.58 kB)

Lasing action in active dielectric nanoantenna arrays

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:27 authored by Son Tung Ha, Yuan Hsing Fu, Naresh Kumar Emani, Zhenying Pan, Reuben M. Bakker, Ramon Paniagua-Dominguez, Arseniy I. Kuznetsov
Directional lasing, with a low threshold and high quality factor, in active dielectric nanoantenna arrays is demonstrated. This is achieved through a leaky resonance excited in coupled gallium arsenide (GaAs) nanopillars. The leaky resonance is formed by partially breaking a bound state in the continuum (BIC) generated by the collective, vertical electric dipole resonances excited in the nanopillars for sub-diffractive arrays. By opening an unprotected, diffractive channel along one of the periods of the array one can control the directionality of the emitted light without sacrificing the high Q associated with the BIC mode, thus achieving directional lasing. A quality factor Q = 2750 is achieved at a controlled angle of emission of ~ 3 degrees with respect to the normal of the array with a pumping fluence as low as 10 uJ/cm^2. We demonstrate the possibility to control the lasing directivity and wavelength by changing the geometrical parameters of the nanoantenna array, and by tuning the gain spectrum of GaAs with temperature. Lasing action is demonstrated at different wavelengths and emission at different angles, which can be as large as 25 degrees to the normal. The obtained results provide guidelines for achieving surface emitting laser devices based on active dielectric nanoantennas that are compact and highly transparent.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC