Optica Open
Browse

Learning Arbitrary Complex Matrices by Interlacing Amplitude and Phase Masks with Fixed Unitary Operations

Download (5.58 kB)
preprint
posted on 2023-12-13, 17:00 authored by Matthew Markowitz, Kevin Zelaya, Mohammad-Ali Miri
Programmable photonic integrated circuits represent an emerging technology that amalgamates photonics and electronics, paving the way for light-based information processing at high speeds and low power consumption. Considering their wide range of applications as one of the most fundamental mathematical operations there has been a particular interest in programmable photonic circuits that perform matrix-vector multiplication. In this regard, there has been great interest in developing novel circuit architectures for performing matrix operations that are compatible with the existing photonic integrated circuit technology which can thus be reliably implemented. Recently, it has been shown that discrete linear unitary operations can be parameterized through diagonal phase parameters interlaced with a fixed operator that enables efficient photonic realization of unitary operations by cascading phase shifter arrays interlaced with a multiport component. Here, we show that such a decomposition is only a special case of a much broader class of factorizations that allow for parametrizing arbitrary complex matrices in terms of diagonal matrices alternating with a fixed unitary matrix. Thus, we introduce a novel architecture for physically implementing discrete linear operations. The proposed architecture is built on representing an $N \times N$ matrix operator in terms of $N+1$ amplitude-and-phase modulation layers interlaced with a fixed unitary layer that could be implemented via a coupled waveguide array. The proposed architecture enables the development of novel families of programmable photonic circuits for on-chip analog information processing.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC