Optica Open
Browse

Leveraging Multiplexed Metasurfaces for Multi-Task Learning with All-Optical Diffractive Processors

Download (5.58 kB)
preprint
posted on 2024-09-17, 16:00 authored by Sahar Behroozinia, Qing Gu
Diffractive Neural Networks (DNNs) leverage the power of light to enhance computational performance in machine learning, offering a pathway to high-speed, low-energy, and large-scale neural information processing. However, most existing DNN architectures are optimized for single tasks and thus lack the flexibility required for the simultaneous execution of multiple tasks within a unified artificial intelligence platform. In this work, we utilize the polarization and wavelength degrees of freedom of light to achieve optical multi-task identification using the MNIST, FMNIST, and KMNIST datasets. Employing bilayer cascaded metasurfaces, we construct dual-channel DNNs capable of simultaneously classifying two tasks, using polarization and wavelength multiplexing schemes through a meta-atom library. Numerical evaluations demonstrate performance accuracies comparable to those of individually trained single-channel, single-task DNNs. Extending this approach to three-task parallel recognition reveals an expected performance decline yet maintains satisfactory classification accuracies of greater than 80% for all tasks. We further introduce a novel end-to-end joint optimization framework to redesign the three-task classifier, demonstrating substantial improvements over the meta-atom library design and offering the potential for future multi-channel DNN designs. Our study could pave the way for the development of ultrathin, high-speed, and high-throughput optical neural computing systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC