Optica Open
Browse

Light-induced emergent phenomena in 2D materials and topological materials

Download (5.58 kB)
preprint
posted on 2023-02-03, 17:02 authored by Changhua Bao, Peizhe Tang, Dong Sun, Shuyun Zhou
Light-matter interaction in 2D and topological materials provides a fascinating control knob for inducing emergent, non-equilibrium properties and achieving new functionalities in the ultrafast time scale (from fs to ps). Over the past decade, intriguing light-induced phenomena, e.g., Bloch-Floquet states and photo-induced phase transitions, have been reported experimentally, but many still await experimental realization. In this Review, we discuss recent progress on the light-induced phenomena, in which the light field could act as a time-periodic field to drive Floquet states, induce structural and topological phase transitions in quantum materials, couple with spin and various pseudospins, and induce nonlinear optical responses that are affected by the geometric phase. Perspectives on the opportunities of proposed light-induced phenomena as well as open experimental challenges are also discussed.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC