Optica Open
Browse

Local laser heating effects in diamond probed by photoluminescence of SiV centers at low temperature

Download (5.58 kB)
preprint
posted on 2023-06-14, 16:01 authored by YuanFei Gao, JiaMin Lai, ZhenYao Li, PingHeng Tan, ChongXin Shan, Jun Zhang
Diamond is generally considered to have high thermal conductivity, so little attention has been paid to the laser heating effects at low excitation power. However, defects during the growth process can result in a great degradation of thermal conductivity, especially at low temperatures. Here, we observed the dynamic redshift and broadening of zero phonon line (ZPL) of silicon-vacancy (SiV) centers in diamondin the experiment. Utilizing the intrinsic temperature response of the fine structure spectra of SiV as a probe, we confirmed that the laser heating effect appears and the temperature rising results from high defect concentration. By simulating the thermal diffusion process, we have estimated the thermal conductivity of around 1 W/(mK) at the local site, which is a two order magnitude lower than that of single-crystal diamond. Our results provide a feasible scheme for characterizing the laser heating effect of diamond at low temperatures.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC